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Summary

1. Issues with ecological data (e.g. non-normality of errors, nonlinear relationships and autocorre-

lation of variables) and modelling (e.g. overfitting, variable selection and prediction) complicate

regression analyses in ecology. Flexible models, such as generalized additive models (GAMs), can

address data issues, and machine learning techniques (e.g. gradient boosting) can help resolve mod-

elling issues. Gradient boosted GAMs do both. Here, we illustrate the advantages of this technique

using data on benthicmacroinvertebrates and fish from 1573 small streams inMaryland, USA.

2. We assembled a predictor matrix of 15 watershed attributes (e.g. ecoregion and land use), 15

stream attributes (e.g. width and habitat quality) and location (latitude and longitude). We built

boosted and conventionally estimated GAMs for macroinvertebrate richness and for the relative

abundances of macroinvertebrates in the Orders Ephemeroptera, Plecoptera and Trichoptera

(%EPT); individuals that cling to substrate (%Clingers); and individuals in the collector ⁄gatherer
functional feeding group (%Collectors). For fish, models were constructed for taxonomic richness,

benthic species richness, biomass and the relative abundance of tolerant individuals (%Tolerant

Fish).

3. For several of the responses, boosted GAMs had lower pseudo R2s than conventional GAMs

for in-sample data but larger pseudo R2s for out-of-bootstrap data, suggesting boosted GAMs do

not overfit the data and have higher prediction accuracy than conventional GAMs. The models

explained most variation in fish richness (pseudo R2 = 0Æ97), least variation in %Clingers (pseudo

R2 = 0Æ28) and intermediate amounts of variation in the other responses (pseudo R2s between 0Æ41
and 0Æ60).Many relationships ofmacroinvertebrate responses to anthropogenicmeasures and natu-

ral watershed attributes were nonlinear. Fish responses were related to system size and local habitat

quality.

4. For impervious surface, models predicted below model-average macroinvertebrate richness at

levels above c. 3Æ0%, lower %EPT above c. 1Æ5%, and lower %Clingers for levels above c. 2Æ0%.

Impervious surface did not affect%Collectors or any fish response. Prediction functions for%EPT

and fish richness increased linearly with log10 (watershed area), %Tolerant Fish decreased with

log10 (watershed area), and benthic fish richness and biomass both increased nonlinearly with log10
(watershed area).

5. Gradient boosting optimizes the predictive accuracy of GAMs while preserving the structure of

conventional GAMs, so that predictor–response relationships are more interpretable than with

other machine learning methods. Boosting also avoids overfitting the data (by shrinking effect esti-

mates towards zero and by performing variable selection), thus avoiding spurious predictor effects
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and interpretations. Thus, in many ecological settings, it may be reasonable to use boosting instead

of conventional GAMs.

Key-words: benthic macroinvertebrates, diversity, fish, generalized additive models, richness,

spatial autocorrelation, streams

Introduction

Ecologists often use regression to elucidate relationships

among variables and to build predictive models, but issues

associated with ecological data and modelling complicate

regression analyses. Ecological data are complex, often includ-

ing non-normal errors, nonlinear relationships and variables

that are spatially or temporally autocorrelated. To address

these complexities, ecologists routinely apply flexiblemodelling

approaches. For example, generalized linear models (GLMs;

McCullagh & Nelder 1989) allow users to specify appropriate

response distributions with link functions and to pre-specify

nonlinear relationships, such as logarithmic transformations

for positive predictor variables. However, pre-specification of

nonlinearities is often intractable when relationships are

unknown or when the number of relationships is large.

Ecologists have applied generalized additive models (GAMs;

Yuan&Norton 2003;Austin 2007) to overcome the limitations

of GLMs. GAMs do not require pre-defined specification of

nonlinearities, but preserve the ability of GLMs to construct

complex models (Hastie & Tibshirani 1990; Hastie, Tibshirani

& Friedman 2009). In addition, GAMs automatically identify

nonlinearities using flexible nonlinear modelling approaches

(usually based on spline smoothing) and preserve the easy

interpretability of predictor–response relationships of GLMs

(Hastie&Tibshirani 1990;Wood 2006).

Ecologists should also consider generalmodelling issues, like

overfitting, variable selection and prediction. Overfitting often

results from including too many covariates for a given sample

size and yields overly complex models that contain spurious

effects. Overfitting also decreases prediction accuracy (Hastie,

Tibshirani & Friedman 2009). Variable selection is the process

of correctly identifying the subset of covariates that are most

important in explaining variation in the response and exclud-

ing covariates that do not add explanatory value to a model.

Methods available to address overfitting and variable selection

include penalized estimation (e.g. the lasso or ridge regression),

cross-validation, pruning of decision trees, early stopping of

boosting algorithms, model selection using criteria like AIC

(see Hastie, Tibshirani & Friedman 2009), and Bayesian regu-

larization (O’Hara& Sillanpää 2009).

Prediction accuracy is an especially important requirement

of ecological models, and ecologists have applied machine

learning algorithms (e.g. bagging, boosting, random forests,

Breiman 1996, 2001; Freund & Schapire 1996) to increase pre-

diction accuracy over standard regression methods (e.g. Cutler

et al. 2007; Elith, Leathwick & Hastie 2008; Maloney et al.

2009). Machine learning procedures also incorporate methods

to address overfitting and model selection. Unfortunately,

somemachine learning techniques (bagging or random forests)

produce estimates of predictor–response relationships (mar-

ginal functions) that are difficult to interpret because they are

based on complex ensembles of decision trees (Cutler et al.

2007). Ecologists need modelling approaches that combine the

increased prediction accuracy of machine learning algorithms

with the interpretability and flexibility of GAMmodels.

Here, we present a recently developed technique that extends

the procedure of gradient boosting to GAMs (Bühlmann &

Hothorn 2007), hereafter referred to as boosted GAMs. To

illustrate the advantages of this method, we develop boosted

GAM models that identify the relationships between

watershed-scale environmental and anthropogenic factors and

eight measures of small-stream communities withinMaryland,

USA. All models account for spatial dependencies in the data.

We use bootstrapping to compare the prediction accuracies of

traditional and boostedGAMs.Although our example focuses

on stream data, it demonstrates how boosted GAMs can be

used for modelling basic and applied ecological questions in

other systems.

Generalized additive models

Themodel equation of aGAM is formally given by

g½EðYjXÞ� ¼ fGAM X1; . . . ;Xp

� �
;

where Y denotes a response variable; X is a matrix con-

taining vectors of observations of p explanatory variables;

X1,…, Xp is a set of predictor variables; fGAM is an addi-

tive prediction function of the predictor variables; and g

is a pre-specified link function relating the conditional

mean of Y to the prediction function. For example, if Y is

a count response following a Poisson distribution, g will

typically be the logarithmic transformation. For simplic-

ity, we consider only the main-effects specification of

GAMs, in which fGAM is the sum of a constant intercept

term (b0) and p unknown marginal prediction functions

f1(X1),…, fp(Xp), where each marginal function depends

on one predictor. Thus, estimating fGAM requires estimat-

ing b0 and f1(X1),…, fp(Xp) given by

fGAM X1; . . . ;Xp

� �
¼ b0 þ

Xp

j¼1
fjðXjÞ:

The shapes of marginal prediction functions depend on the

scales of the predictors. For continuous predictors, smooth

(i.e. continuous and differentiable) functions fj (Xj) that are

either linear or nonlinear in Xj are usually tested for inclusion

into the GAM. For categorical predictors, dummy-coded
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variables are typically used. To ensure that marginal functions

are identifiable, f1(X1),…, fp(Xp) are restricted to have zero

mean. For a more detailed description of GAMs, see Hastie &

Tibshirani (1990).

Gradient boosting

We used gradient boosting to increase predictive ability and to

solve two common problems in implementing GAMs: variable

selection (choosing the most informative subset of covariates)

and model choice (selecting the best representations of contin-

uous predictor variables, e.g. nonlinear vs. linear effects).

Boosting is a generic fitting procedure for parametric and non-

parametric statistical models. It is one of the most important

regression fitting techniques when overfitting and variable

selection need to be addressed and is increasingly used in

ecology (De’ath 2007; Elith, Leathwick & Hastie 2008; Hastie,

Tibshirani & Friedman 2009). Originally, boosting was

designed as a machine learning procedure for improving pre-

diction of binary outcomes using weighted ensembles of deci-

sion trees (called base-learners) (Freund & Schapire 1996,

1997). Subsequent articles showed that boosting can be

regarded as a gradient-descent algorithm in function space and

can be used to fit statistical regression models (gradient boost-

ing, Breiman 1998, 1999; Friedman, Hastie & Tibshirani 2000;

Friedman 2001).

Gradient boosting is an iterative process. It begins with an

initial estimation of a function using a constant offset that fits

the data poorly. The fit is improved in each successive iteration

by fitting a base-learner (e.g. a tree or least squares estimator)

to the negative gradient of a pre-specified loss function (for

example, the negative log-likelihood of a GAM). The estimate

of the prediction function is updated with the estimate of the

negative gradient, and the function approaches the true form

of the relationship with successive iterations (see Fig. 1 and the

more detailed description below).

Gradient boosting improves model accuracy while simul-

taneously accomplishing variable selection and model

choice, and it has distinct advantages over alternative

methods. If gradient boosting is stopped before conver-

gence, it improves prediction accuracy by shrinking regres-

sion coefficients towards zero, a method analogous to lasso

regression (Tibshirani 1996), ridge regression (Hoerl &

Kennard 1970) and shrinkage smoothing (Wood 2006). To

accomplish variable selection, gradient boosting sets some

coefficients to zero (similar to lasso regression). Wood’s

shrinkage smoothers accomplish variable selection by

imposing heavy penalties on some of the effects, shrinking

them to values that are very close to zero. Ridge regres-

sion, in contrast, does not accomplish variable selection

because all coefficient estimates differ from zero. An addi-

tional strength of gradient boosting is its greater flexibility

to incorporate nonlinear relationships and spatial effects

than lasso regression. Recent work has combined lasso esti-

mation with modelling techniques that incorporate nonlin-

ear relationships (Meier, van de Geer & Bühlmann 2009),

but this method has not been adapted yet to regression

models with two-dimensional spatial effects or scale param-

eter estimation.

Many boosting algorithms for regression models have been

suggested; for example, Cutler et al. (2007) and Elith, Leath-

wick & Hastie (2008) recommended boosting with regression

tree base-learners for ecological applications. Also, many types

of base-learners (e.g. smoothing or P-splines to fit smooth

functions of predictors) have been suggested (see Bühlmann &

Yu 2003; Bühlmann&Hothorn 2007; Kneib, Hothorn& Tutz

2009), and gradient boosting was explicitly used to fit GAMs

(Bühlmann & Hothorn 2007; Kneib, Hothorn & Tutz 2009).

Here, we use gradient boosting with component-wise base-

learners, a modification particularly suited for shrinkage and

variable selection (Bühlmann&Hothorn 2007).

FORMAL DEFIN IT ION OF GRADIENT BOOSTING

Consider a set of realizations of the response variable Y and

the vector of predictor variables X :¼ X1; . . . ;Xp

� �
. In this

article, the realizations (denoted by X1;Y1ð Þ; . . . ; Xn;Ynð ÞÞ
contain data from a published stream assessment, and n

denotes the number of sample sites. Define X :¼ X1; . . . ;Xnð Þ
and Y :¼ Y1; . . . ;Ynð Þ. Gradient boosting estimates the

optimal prediction function

f � :¼ argminfEY;X q Y; fðXÞð Þ½ �;

i.e., f � minimizes the expectation of a loss function q
(here, the negative log-likelihood function of the GAM)

over the set of all possible prediction functions f that take
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Fig. 1.Marginal function estimates from a simulated data set as the

number of boosting iterations increases. The true relationship is

Y = sin(X) + e, where e is a normally distributed error with zero

mean. Gradient boosting with the squared error loss was used to fit

the predictor–response relationship (marginal function). A P-spline

base-learner was used for X, m was set equal to 0Æ1, and the initial

boosting estimate (offset value) was set equal to 0 (this corresponds to

a horizontal line at 0 – see section Formal definition of gradient boost-

ing for a definition of these terms). As the algorithm proceeds, the iter-

ation number increases and the function estimates approach the sine

function.
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the predictors X1; . . . ;Xp as input variables. f� could be

any type of function that minimizes EY;X q Y; fðXÞð Þ½ �, but
the additive structure of a GAM emerges from the gradi-

ent boosting algorithm (below).

The exact distributions of X and Y (needed to derive

EY;X q Y; fðXÞð Þ½ �) are typically unknown, so gradient boosting

insteadminimizes the empirical risk

R :¼ 1

n

Xn
i¼1

qðYi; fðXiÞÞ

over f, where X1; . . . ;Xn and Y1; . . . ;Yn are some (inde-

pendent and identically distributed) sample points of X

and Y, respectively. R is an approximation of the

unknown theoretical risk EY;X q Y; fðXÞð Þ½ �, so R corre-

sponds to the empirical mean of the negative log-likeli-

hood contributions qðYi; fðXiÞÞ, i ¼ 1; . . . ; n, of the sample

sites with observed data values X1;Y1ð Þ; . . . ; Xn;Ynð Þ
substituted into q. Minimizing R over f is equivalent to

maximizing the empirical log-likelihood function R over f,

but the former approach is commonly used (Bühlmann &

Hothorn 2007).

Gradient boosting uses gradient descent to estimate the set

of values f̂1 :¼ f̂ðX1Þ; . . . ; f̂n :¼ f̂ðXnÞ that minimize R over

f1 :¼ fðX1Þ; . . . ; fn :¼ fðXnÞ. Gradient descent is a standard

method for functionminimization (Hastie, Tibshirani &Fried-

man 2009). It begins with arbitrary raw estimates (e.g. all zero)

of the predicted values f̂1; . . . ; f̂n, and then iteratively updates

the function estimates by adding at each step a small fraction

of the negative derivative of R with respect to f1; . . . ; fn (also

called the negative gradient), evaluated at the current esti-

mates. In this way, the procedure effectively descends the

empirical risk surface along the directionwith steepest gradient

until the minimum of R is reached. The procedure is termi-

nated when it converges, that is, when the current function esti-

mates differ less than a small, user-defined amount from their

values in the previous iteration.

If gradient descent is used without considering predictor

variables (i.e. if f̂1; . . . ; f̂n are treated as fixed parameters inde-

pendent of X1; . . . ;Xn), then gradient descent yields estimates

f̂1; . . . ; f̂n that equal observed response values Y1; . . . ;Yn

because R becomes minimal if f̂1; . . . ; f̂n

� �
¼ Y1; . . . ;Ynð Þ.

Such function estimates would overfit the data and could not

make predictions of novel values of Y. Gradient boosting

addresses this problem by replacing the negative gradient of R

with respect to f1; . . . ; fn (denoted byU) with an estimate of this

gradient that depends on the values of one or several of the pre-

dictors. In each iteration of the algorithm, the estimate of U is

obtained by evaluating a set of base-learners. A base-learner is

a regression estimator with U as the outcome variable and a

subset of the predictors as input. For example, each base-lear-

ner could depend on exactly one of p predictors, yielding a set

of p base-learners.

All base-learners in a boosting algorithm must be compara-

ble, so that no base-learner is systematically preferred over

others in some iteration of the algorithm. For example, a

smooth nonlinear base-learner might fit the negative gradient

better than a linear base-learner simply because the nonlinear

form has more degrees of freedom rather than because its

underlying effects on U are stronger. (Note: smoothness of

nonlinear base-learners represented by smoothing or P-splines

can be measured by their degrees of freedom, i.e., by trace of

their hat matrix, Kneib, Hothorn & Tutz 2009.) In this case,

the nonlinear base-learner would be preferred over the linear

one, which leads to a biased selection of base-learners. Select-

ing smoothing parameters to ensure the same degrees of free-

dom for all base-learners overcomes this problem (see Hastie

& Tibshirani 1990; Kneib, Hothorn & Tutz 2009) and controls

the smoothness of nonlinear marginal function estimates, so

that cross-validation of smoothing parameters for these func-

tions is not needed (unlike conventional GAM estimation,

Wood 2006).

COMPONENT-WISE GRADIENT BOOSTING

Component-wise gradient boosting uses only the one base-lear-

ner that fits U best to estimate U (Û) in each iteration (Bühl-

mann & Hothorn 2007; see Appendix S1 for a simple

example). A small fraction m of Û is added to the current values

f̂1; . . . ; f̂n and then Û is re-estimated in following iterations

using the best-fitting base-learner. The step-length factor m
needs to be small (see Bühlmann & Hothorn 2007), and we

used the commonly chosen value m ¼ 0�1. The updated values

f̂1; . . . ; f̂n depend on the predictors because Û is estimated from

a regression model (the best-fitting base-learner) that depends

on a subset of predictors. If a base-learner has been used in one

of the iterations of the gradient boosting algorithm, it is not

removed from the set of base-learners butmay be used again in

later iterations. Selecting the best-fitting base-learner in each

step achieves variable selection and helps avoid overfitting.

The component-wise gradient boosting algorithm we used

proceeds as follows:

1. Initialize the n-dimensional vector f̂ ½0� with raw initial esti-

mates of f̂1; . . . ; f̂n using zeroes or the average value of the

response (Bühlmann&Hothorn 2007).

2. Specify the set of base-learners, as regression estimators

with one continuous output variable. Each base-learner

depends on one of the p predictors, yielding a set with P ‡ p

base-learners (because it is possible to specify more than one

base-learner for each of the covariates, see below). Set

m = 0, where m denotes the number of the current boosting

iteration.

3. Increase m by 1, derive the negative gradient

� @R
@f1
; . . . ; @R@fn

� �
and evaluate it at the current estimates

f̂ ½m�1� ¼ f̂
½m�1�
1 ; . . . ; f̂

½m�1�
n

� �
to obtain the negative gradient

vectorU½m�1� :¼ � @
@fi

q Yi; f̂
½m�1�
i

� �� �
i¼1;...;n

:

4. Fit the negative gradient to each base-learner separately to

obtain p vectors of predicted values, where each vector is an

estimate of the negative gradient vector U½m�1�. Select the

base-learner that fits U½m�1� best according to the R-squared

goodness-of-fit criterion (an appropriate measure of fit

because the empirical risk R and its negative gradient

� @R
@f1
; . . . ; @R@fn

� �
are both continuous). The vector of predicted

values Û ½m�1� from the best-fitting base-learner depends on
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the values of predictors that are the inputs of that base-lear-

ner.

5. Update f̂ ½m� ¼ f̂ ½m�1� þ mÛ½m�1� (where m is the step-length)
to add a small fraction of the estimated negative gradient to

the current values of f̂1; . . . ; f̂n.

6. Iterate steps 3–5 until a stopping iteration (denoted by

mstop) is reached, yielding the final predicted values f̂
½mstop � that

estimate the optimal prediction function.

Some base-learners may not be selected before the algorithm

stops, achieving automatic variable selection. The algorithm

selects among variables and between linear and nonlinear

base-learners for some variables, achieving model choice. The

estimate of the prediction function has a smaller absolute value

than it would if the boosting algorithm had been run until con-

vergence, achieving the shrinkage property of boosting (esti-

mates shrunken towards zero). Variable selection and

shrinkage help avoid overfitting so that spurious effects are

excluded or diminished. From step 5 it is seen that the final

estimates have an additive structure that matches the

additive structure of the prediction function fGAM (Friedman,

Hastie & Tibshirani 2000; Bühlmann & Hothorn 2007). See

Appendix S1 formethodological details.

Gradient boosting is typically stopped early (before conver-

gence) to avoid overfitting the data and improve prediction

accuracy.We used fivefold cross-validation to choose the stop-

ping iteration, mstop. In each iteration, we evaluated empirical

risk five times using four-fifths of the data to fit the data and

the remaining one-fifth to evaluate risk. The five estimates are

averaged to obtain the mean empirical risk for that iteration.

mstop is the iteration with lowest empirical risk. Because predic-

tion accuracy is optimized within the GAM framework,

boosted GAMs can predict novel observations better than

GAMs fitted with conventional methods such as backfitting

(Hastie &Tibshirani 1990).

SPATIAL AUTOCORRELATION

Spatial autocorrelation is common in ecological data (Legen-

dre 1993). Its presence violates a main assumption of statistical

models that rely on independent observations, and failure to

account for spatial autocorrelation can bias results and conclu-

sions. Spatial autocorrelation can be addressed by filtering it

out prior to modelling, by directly accounting for it in model

construction or using permutation (e.g. the Mantel test) to

avoid biased significance tests (Legendre 1993; Diggle & Ribe-

iro 2007). Unlike linear models that represent spatial correla-

tion within the correlation structure of the error term, GLMs

and GAMs have no standard formulation to represent spa-

tially autocorrelated count or binary data (Kneib, Müller &

Hothorn 2008). Smoothing functions can address spatial auto-

correlation in GLMs and GAMs using a smooth, nonlinear,

surface function (fSP) of the spatial coordinates (Kneib,Müller

& Hothorn 2008). This function, which can be interpreted as

the realization of a spatially correlated stochastic process,

becomes an additional predictor in the GAMwhen it is added

to the other effects contained in the prediction function. Usu-

ally, this function is estimated via two-dimensional spline

smoothing of the spatial coordinates (Wood 2003, 2006;

Kneib,Müller &Hothorn 2008).

DATA SETS

We studied the 23 408 km2 portion of Maryland within the

Chesapeake Bay basin in themid-Atlantic region of theUnited

States (online Appendix S2). Benthic macroinvertebrate and

fish assemblage datawere collected by theMarylandBiological

Stream Survey (MBSS, USEPA 1999), an ongoing statewide

survey of first- to fourth-order streams where stream physical,

hydrological, water chemistry, location, riparian conditions

and biological communities are measured (MD DNR 2007).

We used data collected from 1994 to 2004 at sites with

watershed areas <200 km2 that were within the Chesapeake

Bay watershed.We used only the first record for sites that were

sampled more than once (n = 26 sites). Of approximately

2500MBSS samples, 1573 satisfied these conditions.

For macroinvertebrates, we examined taxonomic richness

(macroinvertebrate richness); relative abundances of sensitive

macroinvertebrates in the Orders Ephemeroptera, Plecoptera

and Trichoptera (%EPT); individuals that cling to substrate

(%Clingers); and individuals in the collector ⁄gatherer func-

tional feeding group (%Collectors). For fish, we calculated

taxonomic richness (fish richness), benthic species richness

(benthic fish richness), biomass (fish biomass) and relative

abundance of tolerant individuals (%Tolerant Fish).

We assembled a matrix of predictor variables taken from

previous studies or that were measured by the MBSS (see

Maloney et al. 2009 and online Appendix S3). We included

data on 15 watershed attributes (e.g. ecoregion, drainage area

land use) and 15 stream attributes (e.g. streamwater chemistry,

width and habitat quality scores; see online Appendix S3). We

also included the latitude and longitude of each sampling reach

to account for spatial effects.

Seven sites hadmissing values for one ormore predictors, so

they were removed before analyses (n = 1566). Ninety-five

sites had no fish collected and were not used to examine fish

responses (n = 1471). An additional five sites had no biomass

records for fish, leaving n = 1466 for this analysis.

STATIST ICAL ANALYSES

A component-wise boosted GAM was constructed for each

response. For count responses, we used the Poisson distribu-

tion (both fish richness measures) or the negative binomial

distribution (macroinvertebrate richness) if the Poisson model

did not fit because of overdispersion (Hilbe 2007). The link

function used was the natural logarithm. For percentage data,

we used a Gaussian distribution after arcsine square-root

transformation because preliminary models with untrans-

formed Gaussian, log or square-root-transformed Gaussian,

or Gamma distributions did not satisfy model assumptions of

homoscedasticity and normality of residuals. For fish biomass,

we used a Gamma distribution with the logarithmic link func-

tion because this variable was positive and highly right-skewed.

Predictors with highly right-skewed distributions were log10
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transformed before analyses (Appendix S3). Model assump-

tions were checked using residual plots. Smooth nonlinear

functions were modelled using penalized regression splines

with a B-spline basis (P-Splines, Wood 2006; Kneib, Hothorn

&Tutz 2009).

For each of the ~p continuous predictor variables, we speci-

fied two base-learners: a linear base-learner (a linear regression

with U as the outcome variable and the predictor as the only

input variable) and a smooth nonlinear base-learner (a P-spline

with U as the outcome variable and the predictor as the only

input variable, Kneib, Hothorn & Tutz 2009). For each of �p

categorical predictor variables, we specified one base-learner

as a linear model in which U was the outcome variable and

dummy-coded variables representing the predictor were the

only input variables. To estimate fSP, we specified two base-

learners withU as the outcome variable and UTM easting and

northing coordinates XE and XN as input variables; one base-

learner was a linear surface function of XE and XN, and the

other was a smooth nonlinear function modelled by a tensor

product P-spline (Kneib, Müller & Hothorn 2008; Kneib,

Hothorn & Tutz 2009). With these specifications, there were

2 � ~pþ �pþ 2 base-learners in eachGAM:

f
GAM
ðX1; . . . ;Xp;XE;XNÞ ¼ b0 þ

Xp

j¼1
fjðXjÞ þ fSPðXE;XNÞ:

To assure base-learner comparability, we set the degrees of

freedom to 1 for all base-learners by omitting the intercept

term and by adding additional penalties to base-learners for

categorical predictor variables.We also added a constant base-

learner to account for the model intercept (see Hothorn et al.

2010a,b for the details of this procedure). For starting values,

we used the loss-minimizing constants that maximize the log-

likelihood (Bühlmann & Hothorn 2007), such as the mean

response value for arcsin-transformed Gaussian models. We

could have used zeros, but constants maximizing the log-likeli-

hood shortened running times.

Once GAMs were fitted, we plotted the marginal function

estimates for each continuous predictor in each fitted GAM to

visualize the strength and form (linear or nonlinear) of depen-

dency patterns between predictors and responses. Marginal

estimates can also be used to predict the expected response for

any value of the predictors (Appendix S4), and we calculated

predicted responses for the 10th, 50th and 90th percentile of%

impervious surface cover and watershed area. Bootstrap sam-

ples were used to estimate confidence intervals for these pre-

dicted responses.

We used bootstrapping to quantify the precision of boosting

algorithms. Each of 100 bootstrap samples from the full data

set was used as a training data set to which gradient boosting

was applied. The GAM estimates and true outcome values of

the 100 bootstrap data sets were used to compute bootstrap

confidence intervals and medians for the generalized in-sample

R2 (Nagelkerke 1991; also called pseudo R2, Everitt 2006). We

then tested the prediction accuracy of each GAM using boot-

strap cross-validation (Harrell 2001). We obtained 100 predic-

tion functions by applying gradient boosting to the 100

bootstrap samples and applied each prediction function to its

out-of-bootstrap observations (observations not in the sam-

ple). The cross-validation predictions and the measured

response values of the 100 cross-validated out-of-bootstrap

data sets were used to compute bootstrap confidence intervals

and medians for the out-of-bootstrap pseudo R2, which mea-

sures prediction accuracy for novel observations. Although

bootstrap analyses were used to estimate confidence intervals,

interpretations of effects were based on models built with the

full data set.

We also modelled each response using conventional meth-

ods for GAMestimation (backfitting in combination with gen-

eralized cross-validation using R package mgcv, see Wood

2006). All analyses were conducted with the R system for sta-

tistical computing (R Development Core Team 2010). Boost-

ing estimates were obtained using the R add-on package

mboost (Hothorn et al. 2010a,b). All add-on packages and

sample R-code are described in supporting material (online

Appendix S5).

Results

MODEL COMPARISON

For fish richness, in-sample and out-of-sample pseudo R2

values were equivalent between boosted and conventional

Table 1. Median pseudo R2 values for boosted and conventionally fitted generalized additive models. In-sample pseudo R2 values measure the

fraction of variation in the training data explained by the model (goodness-of-fit). Out-of-bootstrap R2 values measure the prediction accuracy.

The numbers in parentheses are the 10th and 90th percentile values calculated from the 100 bootstrap samples of the full data set

Assemblage Metric Distribution

In-sample Out-of-bootstrap

Boosted GAM Conventional GAM Boosted GAM Conventional GAM

Invertebrates Richness Negative

Binomial

0Æ43 (0Æ36, 0Æ52) 0Æ45 (0Æ42, 0Æ48) 0Æ22 (0Æ00, 0Æ28) 0Æ21 (0Æ10, 0Æ27)

%EPT Gaussian 0Æ59 (0Æ56, 0Æ61) 0Æ64 (0Æ62, 0Æ66) 0Æ47 (0Æ42, 0Æ50) 0Æ36 (0Æ26, 0Æ44)
%Clingers Gaussian 0Æ44 (0Æ42, 0Æ46) 0Æ53 (0Æ51, 0Æ56) 0Æ26 (0Æ23, 0Æ30) 0Æ09 ()0Æ45, 0Æ17)
%Collectors Gaussian 0Æ28 (0Æ25, 0Æ31) 0Æ41 (0Æ37, 0Æ45) 0Æ06 (0Æ02, 0Æ12) )0Æ14 ()0Æ71, 0Æ00)

Fish Richness Poisson 0Æ97 (0Æ96, 0Æ97) 0Æ97 (0Æ96, 0Æ97) 0Æ94 (0Æ92, 0Æ95) 0Æ94 (0Æ92, 0Æ95)
%Tolerant Gaussian 0Æ55 (0Æ53, 0Æ58) 0Æ65 (0Æ62, 0Æ67) 0Æ38 (0Æ29, 0Æ43) 0Æ17 ()0Æ56, 0Æ28)
Benthic richness Poisson 0Æ60 (0Æ58, 0Æ62) 0Æ63 (0Æ61, 0Æ65) 0Æ53 (0Æ49, 0Æ56) 0Æ51 (0Æ45, 0Æ55)
Biomass Gamma 0Æ41 (0Æ37, 0Æ45) 0Æ52 (0Æ49, 0Æ54) 0Æ24 (0Æ13, 0Æ29) )0Æ15 ()0Æ53, 0Æ14)
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GAM models (Table 1). For all other responses, in-sam-

ple pseudo R2 values of conventional GAMs were higher

than those of corresponding boosted GAMs; but out-of-

bootstrap pseudo R2 estimates for conventional GAMs

were lower than those of boosted GAMs (Table 1) for

several responses (%EPT, %Clingers, %Tolerant and Bio-

mass), demonstrating the predictive superiority of these

boosted models. We do not present plots of the conven-

tional marginal functions because they are structurally

similar to those obtained from the boosted GAMs; how-

ever, boosted estimates were less pronounced (closer to

zero line) than conventional estimates, probably because

of the shrinkage property of gradient boosting. We base

the rest of our interpretations on the boosted GAMs.
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Fig. 2.Marginal functional estimates of boosted generalized additive models for% impervious surface cover in a watershed and watershed area.

Response variables were as follows: (a,b) fish richness; (c,d) % of macroinvertebrates collected as Ephemeroptera, Plecoptera and Trichoptera;

(e,f) %macroinvertebrates that cling to substrate; and (g,h) number of benthic fish species. Black lines indicate the marginal functional estimates

from boosted GAMs using the full data set; grey lines represent marginal functional estimates obtained from 100 bootstrap samples of the full

data set. Vertical lines on x-axis indicate observed sample values.
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GOODNESS-OF-F IT OF BOOSTED GAMS

Among responses, the highest amount of variation was

explained by the model for fish richness (median in-sample

pseudo R2 = 0Æ97), and the least variance was explained by

the model for %Collectors (median in-sample pseudo

R2 = 0Æ28; Table 1). Models explained moderate to good

amounts of variation for%EPT,%Tolerant Fish and benthic

fish richness (median in-sample pseudo R2 = 0Æ59, 0Æ55 and

0Æ60, respectively). Models for macroinvertebrate richness,

%Clingers and fish biomass explained slightly less variation

(median in-sample pseudo R2 = 0Æ43, 0Æ44 and 0Æ41, respec-
tively). Prediction accuracy was the highest for fish richness

(out-of-bootstrap median pseudo R2 = 0Æ94) and least for

%Collectors (out-of-bootstrap median pseudo R2 = 0Æ06)
and models for other responses fell in between (Table 1). Out-

of-bootstrap confidence intervals for predictive pseudo R2 val-

ues indicated that boostedmodels predicted better than chance

alone (Table 1), except formacroinvertebrate richness.

PREDICTOR–RESPONSE RELATIONSHIPS FROM

BOOSTED GAMS

Plots of marginal functional estimates show relationships

between a response and any predictor variable after accounting

for all other covariates. Macroinvertebrate richness had posi-

tive and negative relationships with many predictors, including

land use (% impervious surface and % pasture), population

density, stream water chemistry (pH, conductivity, DOC and

NO3–N), and distance to a main stream or major tributary

(online Appendix S6).%EPTwas affected by several land uses

(% impervious surface and % row crop), natural watershed

attributes (elevation and calcareous rock), stream chemistry

(DOC) and stream gradient; %Clingers related to elevation,

calcareous bedrock and embeddedness and less strongly to %

impervious cover than richness and %EPT. %Collectors

related to calcareous bedrock and population density. All fish

response variables were affected by measures of system size

(watershed area and stream width; online Appendix S6).

%Tolerant Fish and fish biomass also related to stream water

chemistry (pHandDOC) and habitat quality (instreamhabitat

and pool quality). Ecoregion had no apparent effects on any

macroinvertebrate or fish response (bootstrap confidence

intervals all included 0, Appendix S7).

We present marginal function plots in detail only for

% impervious surface cover and watershed area for fish rich-

ness, %EPT, %Clingers and number of benthic fish species

(the four best models, Fig. 2). There are negative nonlinear

effects of impervious surface on%EPT (Fig. 2c), and%Cling-

ers (Fig. 2e). A change in slope appears to occur at c. 0Æ4% for

%EPT and c. 0Æ3% for %Clingers. The predicted responses

crossed the 0Æ0 reference line (which represents model-pre-

dicted average of the response) at c. 1Æ5% (bootstrap range

1Æ0–2Æ0%) for %EPT (Figs 2c) and c. 2Æ0% (range 1Æ0–3Æ5%)

for%Clingers (Fig. 2e).

Comparing predicted responses at specific values of a predic-

tor can also help quantify predictor–response relationships.

With all predictor values set to their respective empirical

means, the average prediction of the boosted negative binomial

GAM for macroinvertebrate richness was 19Æ2 (Table 2). This

value was included in the back-transformed 90% confidence

intervals for the 10th percentile of impervious surface but not

for the 50th and 90th percentiles of impervious surface, indicat-

ing that watersheds with low amounts of impervious cover (i.e.

near the 10th percentile) hadmodel-averagemacroinvertebrate

richness, but watersheds in the 50th and 90th percentiles of

impervious cover had richness levels different from the model

average (Table 2). Predicted marginal responses for the 10th,

50th and 90th percentiles of impervious surface also showed a

decreasing trend (19Æ8, 19Æ8 and 17Æ2, respectively, Table 2). A
similar decreasing trend was shown for %EPT and%Clingers

(Table 2). The % impervious surface affected both measures

of fish richness very weakly or not at all (Fig. 2a,g), which is

confirmed by the model-average predictions because each

response fell within the 90% confidence interval (Table 2).

The %Clingers was nonlinearly related to watershed area

(Fig. 2f), and the effect strength increased up to c. 10 km2,

after which it increased more slowly or declined. Marginal

function estimates of fish richness and %EPT increased line-

arly with watershed area (Fig. 2b,d, respectively). Benthic fish

richness increased nonlinearly with watershed area (Fig. 2h).

Small watersheds (10th percentile) had lower thanmodel-aver-

age macroinvertebrate richness, fish richness and benthic fish

richness; medium-sized watersheds (50th percentile) had

model-average levels of these metrics; and larger watersheds

(90th percentile) had higher than model-average levels of these

metrics; %Tolerant Fish showed an opposite pattern

(Table 2). %EPT and %Clingers did not differ among tested

watershed sizes (i.e. all confidence intervals for each tested per-

centile included the respective average prediction, Table 2).

SPATIAL EFFECTS FROM BOOSTED GAMS

Marginal spatial effects (effects of location after accounting for

other covariates) were minor, indicating that most of the

observed spatial variation could be explained by the predictor

variables.Marginal spatial effects weremore apparent inmacr-

oinvertebrate than fish responses. We focus on the marginal

spatial effects for macroinvertebrate and fish richness (Fig. 3);

results for other responses are included in online Appendi-

ces S8 and S9. For macroinvertebrate richness, lower values

were located in the northern Blue Ridge and Northern Pied-

mont ecoregions (indicated by darker shading in Fig. 3a). Fish

richness was slightly lower in the far western area of the study

area (Fig. 3b).

Discussion

We applied gradient boosting to better understand the com-

plex, often nonlinear and spatially correlated effects of anthro-

pogenic activities and natural watershed attributes on stream

macroinvertebrates and fish. Boosted GAMs for four

responses (%EPT, %Clingers, %Tolerant Fish, and fish

biomass) explained a higher proportion of variation in
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out-of-bootstrap samples than conventional GAMs, indicat-

ing that gradient boosting improved predictive ability, possibly

because conventional GAMs overfit these data. The boosted

GAMs also identified many nonlinear relationships between

predictors and measures of fish and macroinvertebrate assem-

blage structure, and identified areas of residual spatial correla-

tion after accounting for other predictors. Measures of system

size influenced both fish and macroinvertebrates; however,

measures of anthropogenic land use more heavily influenced

macroinvertebrates than fish. Boosting improved predictive

accuracy compared with conventional GAMs yet preserved

the interpretability of conventionally fittedGAMs.

PERFORMANCE AND INTERPRETATION OF BOOSTED

GAMS

Fish

Conventional and boosted GAMs for fish richness performed

exceptionally and equally well even when predicting out-of-

bootstrap samples. Such exceptional fits indicate models with

strong inferential and predictive power and suggest that the

covariates selected can effectively model fish richness patterns

in Maryland. Model results indicate that fish richness in small

headwater streams ofMaryland is mainly controlled by system

size and local habitat factors and it is only minimally affected

by catchment land use. The strong, positive effect of system size

and local habitat supports previous findings (Schlosser 1982;

Angermeier & Schlosser 1989). The weak effect of land use

contradicts previous work (e.g. Wang & Lyons 2003; Allan

2004) and demonstrates the difficulty in using fish as indicators

of small-stream impairment from anthropogenic activities

(Schlosser 1990).

The boostedmodel for benthic fish richness performedmod-

erately well and slightly better than the conventional GAM in

predicting out-of-bootstrap samples. Thus, we have moderate

confidence in interpreting the effect estimates. Benthic richness

was strongly related to drainage area, further supporting the

strong effect of system size on fish assemblages. However, ben-

thic richness also showed a strong effect of human population

density, indicating a possible sensitivity of this portion of the

fish assemblage to anthropogenic stress.

Boosted GAMs for %Tolerant fish and fish biomass per-

formed moderately well on in-sample data, but poorly with

Table 2. Estimated intercepts and marginal predictions of responses to selected percentiles of % impervious surface cover and watershed area.

GAM equations were applied to the marginal predictions at the 10th, 50th and 90th percentiles of % impervious surface and watershed area

while other predictors were represented by average values of their marginal prediction functions. Predicted responses were back-transformed to

the original measurement scales of responses using the inverse link function g (Appendix S4). Numbers in brackets are the indicated percentile

values of % impervious surface cover or watershed area. Numbers in parentheses are bootstrapped 90% confidence intervals estimated by the

5% and 95% percentiles from the 100 bootstrap samples. Bold type indicates that the 90% confidence interval does not include the average

response, indicating that the response for a predictor percentile is different frommodelled average

Taxa group Metric Intercept

Average

prediction

% Impervious surface

10th [0Æ1%] 50th [0Æ7%] 90th [14Æ9%]

Invertebrates Richness 2Æ98 (2Æ94, 2Æ99) 19Æ2 19Æ8 (19Æ0, 20Æ5) 19Æ8 (19Æ3, 20Æ0) 17Æ2 (16Æ6, 18Æ7)
%EPT 0Æ55 (0Æ54, 0Æ56) 27Æ3 31Æ1 (29Æ1, 34Æ1) 30Æ7 (29Æ2, 32Æ1) 17Æ7 (15Æ3, 20Æ2)
%Clingers 0Æ66 (0Æ65, 0Æ67) 37Æ6 40Æ2 (38Æ5, 42Æ4) 39Æ3 (38Æ1, 40Æ1) 32Æ4 (29Æ9, 35Æ0)
%Collectors 0Æ64 (0Æ63, 0Æ65) 35Æ4 35Æ4 (34Æ8, 37Æ0) 35Æ0 (34Æ2, 35Æ5) 36Æ1 (34Æ4, 37Æ1)

10th [0Æ1%] 50th [0Æ7%] 90th [14Æ5%]

Fish Richness 2Æ13 (2Æ07, 2Æ27) 8Æ06 7Æ97 (7Æ64, 8Æ18) 7Æ99 (7Æ83, 8Æ21) 8Æ30 (7Æ94, 8Æ80)
%Tolerant 0Æ93 (0Æ91, 0Æ94) 63Æ9 64Æ1 (62Æ4, 65Æ8) 64Æ3 (63Æ4, 65Æ1) 63Æ3 (61Æ7, 66Æ1)
Biomass 2Æ15 (2Æ09, 2Æ18) 7Æ38 7Æ45 (7Æ38, 8Æ25) 7Æ38 (7Æ18, 7Æ54) 7Æ29 (6Æ68, 7Æ52)
Benthic rich. 0Æ44 (0Æ34, 0Æ52) 1Æ26 1Æ27 (1Æ22, 1Æ33) 1Æ24 (1Æ21, 1Æ28) 1Æ30 (1Æ20, 1Æ36)

Taxa group Metric

Watershed area (km2)

10th [1Æ2 km2] 50th [7Æ5 km2] 90th [56Æ4 km2]

Invertebrates Richness 18Æ7 (17Æ5, 19Æ1) 19Æ2 (18Æ4, 19Æ3) 19Æ6 (19Æ3, 21Æ8)
%EPT 24Æ6 (22Æ9, 27Æ3) 27Æ2 (26Æ7, 27Æ8) 30Æ2 (27Æ3, 32Æ2)
%Clingers 35Æ7 (34Æ0, 37Æ6) 38Æ6 (37Æ6, 39Æ3) 37Æ9 (36Æ4, 39Æ9)
%Collectors 36Æ4 (35Æ4, 39Æ0) 35Æ4 (34Æ3, 36Æ0) 34Æ4 (32Æ1, 35Æ6)

10th [1Æ3 km2] 50th [8Æ5 km2] 90th [58Æ0 km2]

Fish Richness 4Æ95 (4Æ58, 5Æ30) 8Æ33 (8Æ03, 8Æ54) 12Æ44 (11Æ72, 13Æ52)
%Tolerant 76Æ2 (72Æ5, 79Æ4) 63Æ8 (61Æ3, 64Æ7) 50Æ7 (48Æ0, 54Æ9)
Biomass 5Æ88 (4Æ92, 6Æ68) 8Æ04 (7Æ64, 8Æ49) 8Æ03 (7Æ32, 9Æ29)
Benthic richness 0Æ63 (0Æ56, 0Æ71) 1Æ31 (1Æ25, 1Æ36) 2Æ41 (2Æ20, 2Æ66)
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out-of-bootstrap data. Thus, we have moderate confidence for

inferences within the data set, but lower confidence in predic-

tive ability. Both metrics were strongly related to system size

and local habitat. %Tolerant fish was also positively related to

human population density, which was expected because this

metric represents the fish species tolerant to human stressors.

Benthic macroinvertebrates

The boosted GAM for %EPT performed moderately well for

both in-sample and out-of-sample data. The %EPT (percent-

age of mayflies, stoneflies and caddisflies) represents the macr-

oinvertebrate taxa that are sensitive to anthropogenic

stressors, so the strong effects of impervious surface and popu-

lation density confirm previous studies (e.g. Paul & Meyer

2001; Wang & Lyons 2003). Bootstrapped marginal function

estimates (grey lines in Fig. 2) for % impervious surface cover

show high confidence that a change in the slope occurred at

0Æ4% impervious surface, with lower than model-average pre-

dictions occurring above 2Æ0% impervious surface. This level is

close to the threshold for negative impacts of impervious sur-

face on macroinvertebrates reported by Baker & King (2010).

The low threshold values suggest that the macroinvertebrate

assemblage is sensitive to levels of imperviousness far below

the 10–20% values in earlier reports (Paul & Meyer 2001;

Wang&Lyons 2003).

Boosted GAMs for macroinvertebrate richness and

%Clingers both performed moderately well with in-sample

data but only weakly in predicting out-of-sample bootstrap

data. We have moderate confidence for inferences within

the data set but lower confidence in model predictive ability.

Marginal function estimates for impervious surface for both

boosted GAMs indicate a change in slope at c. 1Æ0% for macr-

oinvertebrate richness and 0Æ3% for %Clingers, with lower

than model-averages occurring at 3Æ0%, and 1Æ5% impervious

surface, respectively. Both ranges are close to those for%EPT,

further supporting a higher sensitivity of these taxa to impervi-

ous surface than previously reported. The boosted GAM for

%Collectors performed very poorly for both in-sample and

out-of-sample data, so we have little to no confidence in

estimates from this model.

Spatial effects

Marginal spatial effects from boosted GAMs were more

apparent in the macroinvertebrate than fish responses, but

were minor (Fig. 3 and online Appendices S8 and S9). Spatial

autocorrelation is an important issue in ecological studies

(Borcard, Legendre & Drapeau 1992) and biological assess-

ment of streams (King et al. 2005). Our relatively small resid-

ual spatial effects indicate that our other predictor variables

accounted for most of the spatial patterns in the responses,

probably because we included predictors that captured impor-

tant spatial differences (e.g. elevation and bedrock composi-

tion) or that were good predictors of responses regardless of

spatial patterns. Our study area was irregularly shaped, which
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Fig. 3.Marginal spatial effect estimates from the negative binomial model for macroinvertebrate richness (a) and the Poisson model for fish rich-

ness (b). Darker shading indicates smaller values of the marginal spatial effect.
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can lead to boundary effects (Fortin 1999), but penalized ten-

sor product B-spline surfaces tend to be relatively robust in

cases where data are irregularly distributed (Kneib, Müller &

Hothorn 2008).

COLLINEARITY

Some of our predictor variables were highly correlated (Spear-

man correlation coefficients >0Æ5, Appendix S10). In conven-

tionally fitted GAMs, high correlations can lead to

multicollinearity problems, such as large variances of estimates

and numerical instability in the fitting process. Boosting

reduces multicollinearity problems by shrinking effect esti-

mates, which also reduces the variances of estimates. Other

popular methods, such as ridge regression, also use shrinkage

to address multicollinearity problems and to stabilize model

estimation (Hastie, Tibshirani & Friedman 2009). The narrow

ranges obtained from the bootstrap analysis (grey lines in

Fig. 2 and Appendix S6) confirm the stability of our results by

demonstrating that our estimates have small variances. Multi-

collinearity does not seem to be disrupting our analyses.

IMPROVING MODEL PERFORMANCE

Model performancemight be improved by incorporatingmore

effective predictor variables, by refining the statistical methods

or by choosing other techniques if prediction (rather than inter-

pretation) is the main goal.More effective measures of the spa-

tial configuration of land uses and quantitative measures of

riparian conditions may improve model fits (Baker, Weller &

Jordan 2006). Additionally, the MBSS measures of benthic

habitat condition were largely qualitative (e.g. % embedded-

ness), and more quantitative measures of benthic habitat

condition, such as bed stability, might improve model perfor-

mance, especially for responses that reflect benthic conditions

(e.g. benthic fish richness and %Clingers). Fish biomass was

measured per area rather than volume, so adjusting for volume

sampledmay improveGAMpredictions for this response. The

boosted GAM for %Collectors did not fit well. Collectors are

the portion of the assemblage that feed on detrital deposits or

loose surface films. Additional covariates that quantify these

stream characteristics (e.g. benthic particulate organic matter,

total suspended solids and a quantitative measure of benthic

condition) would likely improve model performance. Spatial

patterns were minor for all boosted GAMs, but better

measures or models of network positionmight further dampen

the spatial signal.

Emerging statistical refinements may improve the model

performance. Alternative distributions (e.g. binomial or beta)

or new transformations may better represent percentage data.

Boosting might be combined with new statistical techniques,

such asGAMs for location, shape and scale (GAMLSS, Rigby

& Stasinopoulos 2005), which can model relationships of pre-

dictor variables to the scale and shape parameters of a model

family as well as to the conditional mean of the response vari-

able. The main effects framework used here could be extended

with interaction and varying coefficient terms (Hastie & Tibsh-

irani 1993). All these enhancements might improve fit and pre-

dictive ability, but would add a large computational burden, so

their feasibilities need to be investigated. A simple test for the

importance of interaction would be to compare the predictive

ability of boosted GAMs to methods that easily allow interac-

tions (e.g. random forests).

When prediction success is the main goal, tree-based tech-

niques such as bagging or random forests (Breiman 2001)

might perform better than boosted GAMs. Because bagging

and random forests are tree-based methods, they can easily

represent complex interactions between predictor variables

that are difficult to incorporate into the additive prediction

function of a GAM. However, estimates from bagging and

random forests are typically hard to interpret (Cutler et al.

2007). Multivariate Adaptive Regression Splines (MARS,

Friedman 1991) is another modelling procedure that allows

nonlinear predictor–response relationships, automatic variable

selection, and detection and inclusion of interactions. MARS

was designed for regression problems using the identity link

function, so it is less flexible than boosting in handling model

families with other link functions or unknown scale parameters

(such as contained in the negative binomial family or gamma

family). Penalized estimation techniques have also been

adapted to the Bayesian framework. For example, Park &

Casella (2008) suggested a Bayesian variant of the lasso that

accomplishes shrinkage and variable selection.

Repeated sampling of sites or replicated sampling within a

site can increase model performance, but is usually impractical

for large data sets.

APPLY ING BOOSTING TO GAMS IN ECOLOGY

Generalized additive models are widely used in ecology, but

it is typically difficult to select a subset of informative covari-

ates and to decide between linear or nonlinear functions for

continuous predictor variables. Component-wise gradient

boosting simplifies GAM modelling by making these choices

automatically, and boosting typically increases predictive

ability while preserving the interpretability of marginal pre-

dictor effects. With the MBSS example, boosting did not

improve variable selection or model choice over traditional

GAMs, probably because of strong predictor effects and

because the number of sites was relatively large compared

with the number of covariates. When there are more predic-

tor variables with weaker effects, boosted GAMs are more

likely to outperform conventional methods in variable selec-

tion or model choice because conventional methods are

prone to overfit with many weak effects. When GAMs are

used for prediction, boosting would increase confidence in

the predictions. If prediction is not the main focus, it is not

necessary to use boosting instead of conventional GAMs to

obtain a model with good interpretability. However, if there

are many predictor variables in a data set, boosting may still

be superior to conventional GAMs because boosting reduces

the effects of multicollinearity, overfitting and spurious pre-

dictors to improve interpretability and the understanding of

functional relationships.
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Additional Supporting Information may be found in the online ver-

sion of this article:

Appendix S1.Detailed description how gradient boosting fits a GAM

and a simple example of component-wise gradient boosting.

Appendix S2.Map of the Chesapeake Bay basin portion ofMaryland,

USA, study locations (X), and ecoregion boundaries. Inset shows the

position of the study area in relation to the mid-Atlantic region of the

USA.

Appendix S3. List of covariates used in model construction. *Vari-

ables that were log10 transformed prior to analyses.

Appendix S4. Mathematical formulas for transforming marginal

function estimates from boosted GAMs back to the original units of

the responses.

Appendix S5. Software and sample R-code used in statistical analy-

ses.

Appendix S6. Marginal functional estimates for boosted generalized

additive models for all eight response variables. For figures: black

lines indicate the marginal functional estimates from the boosted

GAMs using the full data set; gray lines represent marginal functional

estimates obtained from 100 bootstrap samples of the full data set.

Vertical lines on the x-axis indicate observed sample values. Abbrevi-

ations for predictors (x-axis) defined inAppendix S3.

Appendix S7. Marginal ecoregion effect estimates for boosted gener-

alized additive models for benthic macroinvertebrate and fish

response variables. All effects aremean-centered.

Appendix S8. Marginal spatial effect estimates for boosted general-

ized additive models for benthic macroinvertebrate response vari-

ables.

Appendix S9. Marginal spatial effect estimates for boosted general-

ized additivemodels for fish response variables.

Appendix S10.Correlation (Spearman)matrix of covariates.

Appendix S11.Fish diversity data file.

Appendix S12.Covariate data file.
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